
Anybus® CompactCom™ 40

HOST APPLICATION IMPLEMENTATION GUIDE

HMSI-27-334
Version 1.8

Publication date 2023-05-05

ENGLISH

Important User Information

Disclaimer
The information in this document is for informational purposes only. Please inform HMS Networks of any
inaccuracies or omissions found in this document. HMS Networks disclaims any responsibility or liability for
any errors that may appear in this document.

HMS Networks reserves the right to modify its products in line with its policy of continuous product
development. The information in this document shall therefore not be construed as a commitment on the
part of HMS Networks and is subject to change without notice. HMS Networks makes no commitment to
update or keep current the information in this document.

The data, examples and illustrations found in this document are included for illustrative purposes and
are only intended to help improve understanding of the functionality and handling of the product. In
view of the wide range of possible applications of the product, and because of the many variables and
requirements associated with any particular implementation, HMS Networks cannot assume responsibility
or liability for actual use based on the data, examples or illustrations included in this document nor for
any damages incurred during installation of the product. Those responsible for the use of the product
must acquire sufficient knowledge in order to ensure that the product is used correctly in their specific
application and that the application meets all performance and safety requirements including any applicable
laws, regulations, codes and standards. Further, HMS Networks will under no circumstances assume liability
or responsibility for any problems that may arise as a result from the use of undocumented features or
functional side effects found outside the documented scope of the product. The effects caused by any direct
or indirect use of such aspects of the product are undefined and may include e.g. compatibility issues and
stability issues.

Copyright © 2023 HMS Networks

Contact Information
Postal address:
Box 4126
300 04 Halmstad, Sweden

E-Mail: info@hms.se

Table of Contents
1. Preface .. 1

1.1. About this Document .. 1
1.2. Related Documents ... 1
1.3. Document History .. 1
1.4. Document Conventions ... 2

2. Introduction ... 4
2.1. Overview .. 5
2.2. Preparations .. 6

3. Step One .. 7
3.1. System Adaptation and Application Development ... 7
3.2. System Set-up .. 7

3.2.1. Big- or Little Endian ... 7
3.2.2. 16-bit Char System .. 7
3.2.3. Extended Bus Endian Difference .. 7
3.2.4. Data Types ... 8

3.3. Anybus CompactCom Set-up ... 8
3.3.1. Communication Interfaces and Operating Modes .. 8
3.3.2. Parallel Operating Mode Specifics .. 9
3.3.3. SPI Operating Mode Specifics ... 10
3.3.4. Module ID and Module Detect Settings .. 10
3.3.5. Message and Process Data Settings ... 11
3.3.6. Interrupt Handling ... 11
3.3.7. Communication Watchdog Settings ... 11
3.3.8. ADI Settings .. 11
3.3.9. Debug Event Print Settings ... 12
3.3.10. Startup Time ... 12
3.3.11. Sync Settings ... 13

3.4. System Adaptation Functions ... 14
3.4.1. General Functions .. 14
3.4.2. SPI Operating Mode ... 15
3.4.3. Parallel Operating Mode ... 16
3.4.4. Serial Operating Mode .. 17

3.5. Object Configuration .. 17
3.6. Example Application .. 18

3.6.1. ADI and Process Data Mapping ... 18
3.6.2. Main Loop .. 18
3.6.3. Compile and Run ... 20

4. Step Two ... 21
4.1. Adaptations and Customizations .. 21

4.1.1. Anybus CompactCom Setup ... 21
4.1.2. System Adaptation Functions ... 24
4.1.3. Network Identification .. 25
4.1.4. Software Platform Porting ... 27
4.1.5. Example Application ... 30

Appendix A. Software Overview ... 42
1. Folders ... 42
2. Root Files ... 42
3. CompactCom Driver Interface (Read Only) .. 42

Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8

4. Internal Driver Files (Read Only) .. 43
4.1. 8/16 Bit Parallel Event Specific Files ... 43
4.2. SPI Specific Files ... 43
4.3. 8 Bit Parallel Half Duplex Specific Files .. 43
4.4. Serial Specific Files .. 44

5. System Adaptation Files .. 44

Appendix B. API ... 45
1. API Documentation .. 45

Appendix C. Host Application State Machine .. 48

Appendix D. 30- and 40-series Modules in the Same Application ... 51
1. Hardware Design Considerations .. 51
2. Module Identification ... 52
3. Enable Supported Communication Interfaces .. 52
4. Select Operating Mode ... 53
5. Message Data Size .. 54
6. Process Data Size ... 54
7. Supported Data Types ... 54

Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8

1. Preface

1.1. About this Document
This document describes the host application example code. It provides a guide for making a simple
implementation and tips for further development.

For additional related documentation and file downloads, please visit www.anybus.com/support.

1.2. Related Documents
Document Author Document ID

Anybus CompactCom 40 Software Design Guide HMS HMSI-216-125

1.3. Document History
Version Date Description

1.00 2015-11-20 New document

1.10 2016-02-05 Fully revised revision

1.2 2017-01-10 Converted to DOX Major updates

1.3 2018-01-23 Added disclaimer Changed document type

1.4 2018-05-31 Updated API description

Added appendix on 30- and 40-series modules in the same application Minor updates

1.5 2018-10-16 Minor updates to fit latest software release

1.6 2019-02-25 Rebranding

1.7 2020-03-09 Minor updates

1.8 2023-05-05 Document migrated to Paligo

Minor updates

Preface Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 1 of 54

http://www.anybus.com/support

1.4. Document Conventions

Lists
Numbered lists indicate tasks that should be carried out in sequence:

1. First do this

2. Then do this

Bulleted lists are used for:

• Tasks that can be carried out in any order

• Itemized information

User Interaction Elements
User interaction elements (buttons etc.) are indicated with bold text.

Program Code and Scripts

Program code and script examples

Cross-References and Links
Cross-reference within this document: Document Conventions (page 2)

External link (URL): www.anybus.com

Safety Symbols

DANGER
Instructions that must be followed to avoid an imminently hazardous situation which, if not avoided,
will result in death or serious injury.

WARNING
Instructions that must be followed to avoid a potential hazardous situation that, if not avoided, could
result in death or serious injury.

CAUTION
Instruction that must be followed to avoid a potential hazardous situation that, if not avoided, could
result in minor or moderate injury.

IMPORTANT
Instruction that must be followed to avoid a risk of reduced functionality and/or damage to the
equipment, or to avoid a network security risk.

Anybus® CompactCom™ 40 Document Conventions

Page 2 of 54 HMSI-27-334 Version 1.8

https://www.anybus.com/home

Information Symbols

NOTE
Additional information which may facilitate installation and/or operation.

TIP
Helpful advice and suggestions.

Document Conventions Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 3 of 54

2. Introduction

When starting an implementation of the Anybus CompactCom 30 or the Anybus CompactCom 40, host
application example code is available to speed up the development process. The host application example
code includes a driver, which acts as glue between the Anybus CompactCom module and the host application.
The driver has an API (Application Programming Interface), which defines a common interface to the driver. Also
included in the example code is an example application which makes use of the API to form an application that
can be used as a base for the final product.

NOTE
This guide is developed to describe a step-by-step implementation of the Anybus CompactCom
driver and example application. The programmer is requested to have basic knowledge in
the Anybus CompactCom object model and the communication protocol before starting the
implementation.

This document is based on the contents of version 3.08 of the host application example code.

The guide is divided into two steps:

1. The adaptations needed for the target hardware are done here and a simple application is
developed. The goal with this step is to make sure that the hardware specific code is working
and that it is possible to connect to the network and exchange a limited amount of data.

2. The code is adapted to the target product. The goal with this step is to customize the code and
add to it, to configure the data that will be sent on the network. After this, the application can
be further extended and improved.

The driver is fully OS independent and it can even be used without an operating system, if required.
Furthermore, it can be used for Anybus CompactCom 30 modules as well as Anybus CompactCom 40 modules.
The driver supports multiple operating modes, where selection of one of the implemented modes can be made
at runtime.

It is possible to use modules from the 30- and the 40-series in the same application, see
30- and 40-series Modules in the Same Application, p. 51 (page 51).

The host application example code is available in different versions for different platforms. At this time, the
platforms depicted below are available.

Each folder contains all files for a specific platform/development environment.

Platform Reference Project/Tool Chain Description

Generic - Can be ported to any platform

Xilinx, MicroZed GNU Used for the Microzed evaluation platform with Anybus IP

ST, STM3240-EVAL Keil µVision Used for the STM3240-EVAL evaluation platform

IAR Embedded Workbench Used for the STM3240-EVAL evaluation platform

NXP, TWRP1025 Code Warrior Used for the NXP TWRP1025 evaluation platform

HMS, USB II Board Visual Studio Used for the HMS Starter Kit hardware (USB board)

NUCLEO H743ZI2 ST CubeIDE Used for the NUCLEO H743ZI2 evaluation platform

IAR Embedded Workbench Used for the NUCLEO H743ZI2 evaluation platform

Anybus® CompactCom™ 40 Introduction

Page 4 of 54 HMSI-27-334 Version 1.8

2.1. Overview
Parts of the driver code need to be adapted to the host application platform. This generally includes functions
which access the Anybus host interface, or functions which need to be adapted to integrate the driver into the
host system. The figure below shows the different parts of the host application example code.

Host Application Objects ADI/Process Data

CompactCom Application Handler Main Loop

Example Application

API

CompactCom Driver

System Adaptation Layer

Anybus Physical Interface

Figure 1. Software Overview

The host application example code is divided into five different folders depending on the functionality and
whether or not the files need to be adapted by the user.

Table 1. Folder Structure

/abcc_abp (part of the driver - read only) Contains all Anybus object and communication protocol definitions.
Files may be updated when new Anybus CompactCom releases are
available.

These files are read only and must not be changed in any way by the
user.

/abcc_drv (part of the driver - read only) Contains source and header files for the driver. Files may be updated
when new Anybus CompactCom releases are available.

These files are read only and must not be changed in any way by the
user.

/abcc_adapt Contains configuration files. These files must be modified by the user to
adapt the driver and the example code to the system environment.

NOTE
If using example code adjusted to a specific platform,
most of the adaptations needed in this folder are
already completed.

/abcc_obj Includes all Anybus host application object implementations. These files
can be modified if needed, for optimization and/or additional features.

/example_app Example application including:

• Main state machine to handle initialization, restart, normal and error
states.

• State machine patterns to show how to send Anybus CompactCom
messages.

• Implementation of callbacks required by the driver.

• Definition of ADIs, Application Data Instances, and default process
data mapping setup.

These files have to be adapted to the application by the programmer.
Additionally they may be modified for optimization and/or additional
features.

Overview Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 5 of 54

2.2. Preparations
Before continuing, try to answer as many of the questions below as possible. This will make decisions during
implementation easier. It is also good to have access to the hardware schematics of the target hardware during
the implementation.

Step One

Consider the following questions:

• What operating mode, or modes, shall be used in the design?

• What communication interfaces shall be used to communicate with the CompactCom in the design?

• Which networks shall be used in the design?

• Are the networks available in the CompactCom 40 series or is there also a need to use CompactCom 30 series
modules?

• Are the Module Identification pins connected to the host processor?

• Are the Module Detection pins connected to the host processor?

Step Two

Consider the following questions:

• Is the interrupt signal implemented in the hardware?

• Which parameters/data shall be communicated on the network in the final product?
– Name

– Data type

– Number of elements

– Read/Write access

– Acyclic access, Cyclic access

– Max/Min/Default values

• Which events (diagnostics) shall be reported on the network?

• What network identification parameters are available? E.g. Vendor ID, Product Code, ID number etc.

Anybus® CompactCom™ 40 Preparations

Page 6 of 54 HMSI-27-334 Version 1.8

3. Step One

3.1. System Adaptation and Application Development
When this step is completed you will have...

• ...implemented the system specific functions needed to communicate with the Anybus CompactCom.

• ...compiled the host application example code with default settings.

• ...exchanged data between the host application and the network master/scanner.

3.2. System Set-up
These defines can be found in abcc_adapt/abcc_td.h.

General settings for the system environment, to be used in the driver, are configured here.

3.2.1. Big- or Little Endian
Configure if the host application is a big endian system or a little endian system. Define
ABCC_SYS_BIG_ENDIAN if it is a big endian system. Do not define (leave as default) if the host application is a
little endian system.

#define ABCC_SYS_BIG_ENDIAN /* Big endian host application */
/* #define ABCC_SYS_BIG_ENDIAN */ /* Little endian host application */

3.2.2. 16-bit Char System
Configure if the host application is a 16-bit char system or an 8-bit char system (i.e. if the smallest addressable
type is 8-bit or 16-bit). Define ABCC_SYS_16BIT_CHAR if it is a 16-bit char system. Do not define (leave as
default) if it is an 8-bit char system. Configuring 16-bit char on an 8-bit char system is not recommended.

#define ABCC_SYS_16_BIT_CHAR /* 16 bit char system */

/* #define ABCC_SYS_16_BIT_CHAR */ /* 8 bit char system */

3.2.3. Extended Bus Endian Difference
If the endianness for the external parallel data bus differs from the internal data bus endianness, enable this
define. If parallel 16-bit operating mode is not used, this define is ignored.

#define ABCC_CFG_PAR_EXT_BUS_ENDIAN_DIFF (FALSE)

Step One Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 7 of 54

3.2.4. Data Types
Define the Data Types for the current system. For 16-bit char systems, all 8-bit types shall be typed to 16-bit
types. The following data types must be defined:

BOOL Standard boolean data type.

BOOL8 Standard boolean data type, 8-bit.

INT8 Standard signed 8-bit data type.

INT16 Standard singed 16-bit data type.

INT32 Standard signed 32-bit data type.

UINT8 Standard unsigned 8-bit data type.

UINT16 Standard unsigned 16-bit data type.

UINT32 Standard unsigned 32-bit data type.

FLOAT32 Float (according to IEC 60559).

3.3. Anybus CompactCom Set-up
These defines and functions are found in abcc_adapt/abcc_drv_cfg.h. Detailed descriptions are
available in abcc_drv/inc/abcc_cfg.h.

Settings for how to use and communicate with the Anybus CompactCom. For example, Operating mode,
interrupt handling, and memory handling, are configured here.

3.3.1. Communication Interfaces and Operating Modes
Define the communication interfaces and the operating mode between the host application and the
CompactCom (Parallel, SPI, Serial), that will be used in the implementation. There are several possibilities to
set the operating mode depending on how the host application is intended to communicate with the Anybus and
also depending on how the operating mode is selected by the user.

• First, define all communication interfaces that will be supported by the implementation. All interfaces that will
be used must be defined here, otherwise an error will be reported later on. Only define the interfaces that will
really be used, since every enabled interface will increase the compiled code size.
Only for 40-series.

#define ABCC_CFG_DRV_PARALLEL (TRUE) /* Parallel, 8/16-bit, event
mode */

#define ABCC_CFG_DRV_SPI (FALSE) /* SPI */

For both 30-series and 40-series.

#define ABCC_CFG_DRV_SERIAL (FALSE) /* Serial */

#define ABCC_CFG_DRV_PARALLEL_30 (TRUE) /* Parallel, 8-bit, half
duplex */

NOTE
ABCC_CFG_DRV_SERIAL and ABCC_CFG_DRV_PARALLEL_30 use the CompactCom half
duplex communication protocol, with limited data sizes for process data and message data.

Anybus® CompactCom™ 40 Anybus CompactCom Set-up

Page 8 of 54 HMSI-27-334 Version 1.8

• Get the operating mode from external hardware - If the operating mode is set e.g. via a dipswitch connected
to the host application processor or via an HMI controller, define the ABCC_CFG_OP_MODE_GETTABLE and
implement the function ABCC_SYS_GetOpmode() in abcc_adapt/abcc_sys_adapt.c.

#define ABCC_CFG_OP_MODE_GETTABLE (TRUE)

If not defined, the operating mode defines must be explicitly defined for the specific module type. (See
ABCC_CFG_ABCC_OP_MODE_30 and ABCC_CFG_ABCC_OP_MODE_40 below (page 9)).

• If the operating mode pins on the CompactCom host connector can be controlled by the host processor,
define ABCC_CFG_OP_MODE_SETTABLE and implement the function ABCC_SYS_SetOpmode() in
abcc_adapt/abcc_sys_adapt.c.

#define ABCC_CFG_OP_MODE_SETTABLE (TRUE)

If not defined, it is assumed that the operating mode signals of the CompactCom host connector are fixed or
controlled by external hardware, e.g. a dip-switch.

• If only one operating mode per module type (CompactCom 30 and CompactCom 40) is used, define
the operating mode with ABCC_CFG_ABCC_OP_MODE_30 and ABCC_CFG_ABCC_OP_MODE_40. The
available operating modes (ABP_OP_MODE_X) can be found in abcc_abp/abp.h.

#define ABCC_CFG_ABCC_OP_MODE_30 ABP_OP_MODE_8_BIT_PARALLEL
#define ABCC_CFG_ABCC_OP_MODE_40 ABP_OP_MODE_16_BIT_PARALLEL

If none of these defines are set, ABCC_SYS_GetOpmode() must be implemented to retrieve the operating
mode from external hardware. See ABCC_CFG_OP_MODE_GETTABLE (page 9) above.

3.3.2. Parallel Operating Mode Specifics

NOTE
If parallel operating mode (8-bit or 16-bit) is not used, this section can be ignored.

If direct access to the CompactCom memory is available (the host controller provides dedicated signals to access
external SRAM), define ABCC_CFG_MEMORY_MAPPED_ACCESS to TRUE and define the base address with
ABCC_CFG_PARALLEL_BASE_ADR (this address must be defined to suit the host platform).

#define ABCC_CFG_MEMORY_MAPPED_ACCESS (TRUE)
#define ABCC_CFG_PARALLEL_BASE_ADR (0x00000000)

If direct access to the CompactCom memory is not available, several functions to read and write
data must be implemented in abcc_adapt/abcc_sys_adapt.c (described in abcc_drv/inc/
abcc_sys_adapt_par.h).

NOTE
The recommendation is to have direct access to the CompactCom memory if possible for a simpler
and most often faster implementation.

Anybus CompactCom Set-up Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 9 of 54

3.3.3. SPI Operating Mode Specifics

NOTE
Only for 40-series. If SPI operating mode is not used, this section can be ignored.

The length of an SPI message fragment in bytes per SPI transaction is defined with
ABCC_CFG_SPI_MSG_FRAG_LEN.

If the ABCC_CFG_SPI_MSG_FRAG_LEN value is less than the largest message to be transmitted, the sending
or receiving of a message may be fragmented and take several SPI transactions to be completed. Each SPI
transaction will have a message field of this length regardless if a message is present or not. If messages are
important the fragment length should be set to the largest message to avoid fragmentation. If IO data are
important the message fragment length should be set to a smaller value to speed up the SPI transaction.

For high message performance a fragment length up to 1524 octets is supported. The message header is 12
octets, so 16 or 32 octets will be enough to support small messages without fragmentation.

#define ABCC_CFG_SPI_MSG_FRAG_LEN (16)

3.3.4. Module ID and Module Detect Settings
• If the Module Identification pins (MI) on the CompactCom host connector are not connected

to the host processor, ABCC_CFG_MODULE_ID_PINS_CONN must be defined as FALSE, and
ABCC_CFG_ABCC_MODULE_ID must be defined to the correct CompactCom module ID that corresponds to
the module ID of the used device. If defined, it shall be set to the correct ABP_MODULE_ID_X definition from
abcc_abp/abp.h.
If ABCC_CFG_MODULE_ID_PINS_CONN is defined as TRUE, the function
ABCC_SYS_ReadModuleId() in abcc_adapt/abcc_sys_adapt.c must be implemented.

NOTE
The recommendation is to connect the Module ID pins on the application connector directly to
GPIO-pins on the host processor and implement the ABCC_SYS_ReadModuleId() function.

#define ABCC_CFG_ABCC_MODULE_ID ABP_MODULE_ID_ACTIVE_ABCC40
#define ABCC_CFG_MODULE_ID_PINS_CONN (TRUE)

• If the Module Detect pins (MD) in the host application connector are connected to the host processor, the
ABCC_CFG_MOD_DETECT_PINS_CONN shall be set to TRUE and the ABCC_SYS_ModuleDetect()
function in abcc_adapt/abcc_sys_adapt.c must be implemented.

#define ABCC_CFG_MOD_DETECT_PINS_CONN (TRUE)

Anybus® CompactCom™ 40 Anybus CompactCom Set-up

Page 10 of 54 HMSI-27-334 Version 1.8

3.3.5. Message and Process Data Settings
Leave the following defines with the default values for now.

#define ABCC_CFG_MAX_NUM_APPL_CMDS (2)

#define ABCC_CFG_MAX_NUM_ABCC_CMDS (2)

#define ABCC_CFG_MAX_MSG_SIZE (255)

#define ABCC_CFG_MAX_PROCESS_DATA_SIZE (512)

#define ABCC_CFG_REMAP_SUPPORT_ENABLED (FALSE)

#define ABCC_CFG_CMD_SEQ_MAX_NUM_RETRIES (0)

#define ABCC_CFG_MAX_NUM_CMD_SEQ (2)

NOTE
The different platforms can have different default values depending on the available resources.

3.3.6. Interrupt Handling
If the IRQ pin is connected the driver can be configured to check if an event has occurred
even if the interrupt is disabled. It can be used e.g. to detect the CompactCom power up event.
Define ABCC_CFG_POLL_ABCC_IRQ_PIN to enable this functionality, and implement the function
ABCC_SYS_IsAbccInterruptActive() in abcc_adapt/abcc_sys_adapt.c.

#define ABCC_CFG_POLL_ABCC_IRQ_PIN (TRUE)

In this step, we will not use the interrupt functionality, which means that we will define
ABCC_CFG_INT_ENABLED as FALSE.

If the IRQ pin is not connected, this define must be set to false.

#define ABCC_CFG_INT_ENABLED (FALSE)

3.3.7. Communication Watchdog Settings
The timeout for the CompactCom communication watchdog is configured with ABCC_CFG_WD_TIMEOUT_MS.
If a timeout occurs, the callback function ABCC_CbfWdTimeout() is called.

NOTE
The watchdog functionality is only supported by the SPI-, serial- and parallel30 (half duplex)
operating modes.

#define ABCC_CFG_WD_TIMEOUT_MS (1000)

3.3.8. ADI Settings
Leave the following defines with the default values for now.

#define ABCC_CFG_STRUCT_DATA_TYPE (FALSE)

#define ABCC_CFG_ADI_GET_SET_CALLBACK (FALSE)

#define ABCC_CFG_64BIT_ADI_SUPPORT (FALSE)

Anybus CompactCom Set-up Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 11 of 54

3.3.9. Debug Event Print Settings
For development purposes, a number of debug functions are available for the developer. The following defines
affects debug printouts from the driver. If additional printouts are needed from the application code, use the
ported function ABCC_PORT_DebugPrint() in abcc_adapt/abcc_sw_port.h.

• Enable or disable the error reporting callback function ABCC_CbfDriverError() with
ABCC_CFG_ERR_REPORTING_ENABLED. The function is described in abcc_drv/inc/abcc.h.

#define ABCC_CFG_ERR_REPORTING_ENABLED (TRUE)

• Enable or disable driver support for print out of debug events within the driver
with ABCC_CFG_DEBUG_EVENT_ENABLED. ABCC_PORT_DebugPrint() in abcc_adapt/
abcc_sw_port.h will be used to print debug information.

#define ABCC_CFG_DEBUG_EVENT_ENABLED (TRUE)

• Enable or disable printout of debug information, such as file name and line number, when
ABCC_CbfDriverError() is called with ABCC_CFG_DEBUG_ERR_ENABLED.

#define ABCC_CFG_DEBUG_ERR_ENABLED (FALSE)

• Enable or disable printout of received and sent messages with ABCC_CFG_DEBUG_MESSAGING. Related
events such as buffer allocation and queuing information is also printed.

#define ABCC_CFG_DEBUG_MESSAGING (FALSE)

• Enable or disable printout of command sequencer actions with ABCC_CFG_DEBUG_CMD_SEQ_ENABLED.

#define ABCC_CFG_DEBUG_CMD_SEQ_ENABLED (FALSE)

3.3.10. Startup Time
If the CompactCom IRQ pin is connected, ABCC_CFG_STARTUP_TIME_MS will be used as
a timeout while waiting for the CompactCom to become ready for communication. An error
(APPL_MODULE_NOT_ANSWERING) will be reported if the start-up interrupt is not received within this time. If
the interrupt pin is not available ABCC_CFG_STARTUP_TIME_MS will serve as time to wait before starting to
communicate with the CompactCom. If not defined, the default value is 1500 ms.

#define ABCC_CFG_STARTUP_TIME_MS (1500)

NOTE
If possible, the recommendation is to use the startup interrupt (option available for the SPI and
parallel communication interfaces).

Anybus® CompactCom™ 40 Anybus CompactCom Set-up

Page 12 of 54 HMSI-27-334 Version 1.8

3.3.11. Sync Settings

NOTE
Only for 40-series.

Leave the following defines with the default values for now.

#define ABCC_CFG_SYNC_ENABLE (FALSE)

#define ABCC_CFG_SYNC_MEASUREMENT_IP (FALSE)

#define ABCC_CFG_SYNC_MEASUREMENT_OP (FALSE)

Anybus CompactCom Set-up Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 13 of 54

3.4. System Adaptation Functions
A number of functions must be implemented for the driver to be able to access the Anybus CompactCom.
The functions shall be implemented in abcc_adapt/abcc_sys_adapt.c. The functions are described per
operating mode in the files specified below.

• General functions: abcc_drv/inc/abcc_sys_adapt.h

• SPI operating mode: abcc_drv/inc/abcc_sys_adapt_spi.h

• Parallel operating mode: abcc_drv/inc/abcc_sys_adapt_par.h

• Serial operating mode: abcc_drv/inc/abcc_sys_adapt_ser.h

3.4.1. General Functions
These functions can be found in abcc_drv/inc/abcc_sys_adapt.h.

ABCC_SYS_HwInit()

This function can be used to initiate the hardware required to communicate with the CompactCom device (e.g.
configuring the direction and initial values of used host processor port pins). This function shall be called once
during the power up initialization.

NOTE
Make sure that the CompactCom is kept in reset state when returning from this function.

ABCC_SYS_Init()

This function is called by the driver at start-up and restart of the driver. If needed, any hardware or system
dependent initialization shall be done here. If not used, leave the function empty.

ABCC_SYS_Close()

Called from the driver if the driver is terminated. If resources were allocated in ABCC_SYS_Init() it is
recommended to close or free them in this function. If not used, leave the function empty.

ABCC_SYS_HWReset()

This function must be implemented to pull the reset pin on the Anybus CompactCom interface to low.

ABCC_SYS_HWReleaseReset()

This function must be implemented to set the reset pin on the Anybus CompactCom interface to high.

ABCC_SYS_AbccInterruptEnable()

For now, interrupt will be disabled. Leave this function empty.

ABCC_SYS_AbccInterruptDisable()

For now, interrupt will be disabled. Leave this function empty.

ABCC_SYS_IsAbccInterruptActive()

If the interrupt pin (IRQ) is connected to the host processor, this function shall read the interrupt signal from
the CompactCom and return TRUE if the interrupt pin is low (i.e. interrupt is active) and return FALSE if
the interrupt pin is high (i.e. the interrupt is inactive). It is used to enable polling of the interrupt pin of the
CompactCom interface if interrupts are not enabled.

ABCC_SYS_SyncInterruptEnable()

For now, synchronization will be disabled. Leave this function empty.

ABCC_SYS_SyncInterruptDisable()

For now, synchronization will be disabled. Leave this function empty.

Anybus® CompactCom™ 40 System Adaptation Functions

Page 14 of 54 HMSI-27-334 Version 1.8

3.4.2. SPI Operating Mode

NOTE
Only for 40-series. If SPI operating mode is not used, the functions below are never called, and this
section can be ignored.

These functions can be found in abcc_drv/inc/abcc_sys_adapt_spi.h.

ABCC_SYS_SpiRegDataReceived(ABCC_SYS_SpiDataReceivedCbfType pnDataReceived)

Registers the callback function that shall be called when new data is received (MISO frame received).

Example 1.

static ABCC_SYS_SpiDataReceivedCbfType pnDataReadyCbf;

void ABCC_SYS_SpiRegDataReceived(
 ABCC_SYS_SpiDataReceivedCbfType pnDataReceived
)
{
 pnDataReadyCbf = pnDataReceived;
}

ABCC_SYS_SpiSendReceive(void* pxSendDataBuffer, void* pxReceiveDataBuffer,
UINT16 iLength)

Handles sending and receiving of data in SPI mode.

Two buffers are provided, one with a MOSI data frame to be sent and one buffer to store the received MISO
frame.

System Adaptation Functions Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 15 of 54

3.4.3. Parallel Operating Mode
These functions can be found in abcc_drv/inc/abcc_sys_adapt_par.h.

NOTE
If parallel operating mode is not used, the functions below are never called, and this section can be
ignored.

NOTE
If parallel operating mode is used and ABCC_CFG_MEMORY_MAPPED_ACCESS is defined, this
section can be ignored. See Parallel Operating Mode Specifics (page 9) for more information about
ABCC_CFG_MEMORY_MAPPED_ACCESS.

ABCC_SYS_ParallelRead()

Reads an amount of octets from the CompactCom memory.

ABCC_SYS_ParallelRead8()

Only used for half duplex parallel operating mode.

Reads an octet from the CompactCom memory.

ABCC_SYS_ParallelRead16()

Reads a word from the CompactCom memory.

ABCC_SYS_ParallelWrite()

Writes an amount of octets to the CompactCom memory.

ABCC_SYS_ParallelWrite8()

Only used for half duplex parallel operating mode.

Writes an octet to the CompactCom memory.

ABCC_SYS_ParallelWrite16()

Writes a word to the CompactCom memory.

ABCC_SYS_ParallelGetRdPdBuffer()

Get the address to the received read process data.

ABCC_SYS_ParallelGetWrPdBuffer()

Get the address to store the write process data.

Anybus® CompactCom™ 40 System Adaptation Functions

Page 16 of 54 HMSI-27-334 Version 1.8

3.4.4. Serial Operating Mode
These functions can be found in abcc_drv/inc/abcc_sys_adapt_ser.h.

NOTE
If serial operating mode is not used, the functions below are never called, and this section can be
ignored.

ABCC_SYS_SerRegDataReceived(ABCC_SYS_SerDataReceivedCbfType pnDataReceived)

Registers a callback function that shall indicate that a new RX telegram has been received on the serial channel.

Example 2.

static ABCC_SYS_SerDataReceivedCbfType pnSerDataReadyCbf;

void ABCC_SYS_SerRegDataReceived(
 ABCC_SYS_SerDataReceivedCbfTypepnDataReceived
)
{
 pnSerDataReadyCbf = pnDataReceived;
}

ABCC_SYS_SerSendReceive(void* pxTxDataBuffer, void* pxRxDataBuffer, UINT16
iTxSize, UINT16 iRxSize)

Send TX telegram and prepare for RX telegram reception.

ABCC_SYS_SerRestart(void)

Restart the serial driver. Typically used when a telegram has timed out.

This command flushes all buffers, restarts communication, and starts waiting for a RX telegram with the length of
the latest provided RX telegram length.

3.5. Object Configuration
For this step, the default settings in the CompactCom will be used. No host application objects are enabled in the
file abcc_adapt/abcc_obj_cfg.h.

In Step Two, the network identification attributes will be customized to fit the target product.

Object Configuration Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 17 of 54

3.6. Example Application
An API layer that defines a common interface for all network applications to the Anybus CompactCom driver
is available. The API is found in abcc_drv/inc/abcc.h. The example application is provided to give an
example of how a standard application implements the CompactCom driver using the API. It can be used as it is
to be able to test the CompactCom concept and can also be used as a base when implementing the driver into
the final application.

3.6.1. ADI and Process Data Mapping
Process data is an integral part of the application. Process data is added to the application by creating ADIs
(Application Data Instances) and mapping them to the desired process data areas (read or write).

For now, the mapping described in appl_adimap_speed_example.c shall be used. This
means that APPL_ACTIVE_ADI_SETUP in /example_app/appl_adi_config.h is defined as
APPL_ADI_SETUP_SPEED_EXAMPLE.

• example_app/appl_adimap_speed_example.c - Simulation of speed and reference speed.
– ADI 1: "Speed", UINT16, Mapped to Read process data

– ADI 2: "Ref Speed", UINT16, Mapped to Write process data

– Data is manipulated with the function APPL_CyclicalProcessing()

– No structures or callbacks are used

3.6.2. Main Loop
The main loop is where the execution of the application starts. In the generic project, it is located in the file
named main.c. Below are some guidelines how to implement the main loop.

• ABCC_HwInit() - this function will initiate the hardware required to communicate with the CompactCom,
and shall be called once during the power-up initialization. It must also make sure that the CompactCom
is kept in reset when returning from the function. The driver can be restarted without calling this
function again. ABCC_HwInit() will trigger the function ABCC_SYS_HwInit() in abcc_adapt/
abcc_sys_adapt.c, which shall be customized to fit the current system. Make sure this function is one of
the first functions called in the main function.

• APPL_HandleAbcc() - This function will run the CompactCom state machine and take care of reset,
run, and shutdown of the driver, and it must be called periodically from the main loop. A status from the
CompactCom driver is returned every time this function is called.

APPL_MODULE_NO_ERROR The CompactCom is OK. This is the normal response if everything is running normal.

APPL_MODULE_NOT_DETECTED No CompactCom is detected. Inform the user.

APPL_MODULE_NOT_SUPPORTED Unsupported module detected. Inform the user.

APPL_MODULE_NOT_ANSWERING Possible reasons: Wrong communication interface selected, defect module.

APPL_MODULE_RESET Reset requested from the CompactCom. A reset is received from the network. The
application is responsible for restarting the CompactCom.

APPL_MODULE_SHUTDOWN Shutdown requested.

APPL_MODULE_UNEXPECTED_ERROR Unexpected error occurred. Inform the user. If necessary, put the outputs in a
fail-safe state.

Anybus® CompactCom™ 40 Example Application

Page 18 of 54 HMSI-27-334 Version 1.8

• ABCC_RunTimerSystem() - This function shall be called periodically with a known period (ms since last
call). This can be done either by having a known delay in the main loop and call the function each iteration, or
by setting up a timer interrupt.
This function is responsible for handling all timers for the CompactCom driver. It is recommended to call
this function on a regular basis from a timer interrupt. Without this function no timeout and watchdog
functionality will work.

NOTE
It is recommended to use a timer interrupt with this function. However, for easier debugging
when implementing, skip the timer interrupt in the beginning.

int main()
{
 APPL_AbccHandlerStatusType eAbccHandlerStatus = APPL_MODULE_NO_ERROR;

 if (ABCC_HwInit() != ABCC_EC_NO_ERROR)
 {
 return (0);
 }
 while (eAbccHandlerStatus == APPL_MODULE_NO_ERROR)
 {
 eAbccHandlerStatus = APPL_HandleAbcc();
#if(!USE_TIMER_INTERRUPT)
 ABCC_RunTimerSystem(APPL_TIMER_MS);
 DelayMs(APPL_TIMER_MS);
#endif
 switch(eAbccHandlerStatus)
 {
 case APPL_MODULE_RESET:
 Reset();
 break;
 default:
 break;
 }
 }
 return (0);
}

Example Application Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 19 of 54

3.6.3. Compile and Run
To compile the project, update the make-file to include all the Anybus CompactCom 40 example code (all of the
five folders described here) and compile.

• /abcc_abp

• /abcc_drv

• /abcc_adapt

• /abcc_obj

• /example_app

Before continuing to Step Two, make sure...

• ...the project compiles without errors.

• ...the host application can communicate with the Anybus CompactCom.

• ...data can be exchanged with the network.

Anybus® CompactCom™ 40 Example Application

Page 20 of 54 HMSI-27-334 Version 1.8

4. Step Two

4.1. Adaptations and Customizations
When this step is completed you have...

• …customized the network identification, e.g. Vendor ID, Product Code, Product Name, etc.

• …created ADI:s for the target product.

• …mapped the ADI:s that shall be exchanged cyclically to process data.

4.1.1. Anybus CompactCom Setup
In Step One, some Anybus CompactCom settings were left at default values. We will revisit some of those values
here.

Message and Process Data Settings

• The number of message commands that can be sent without receiving a response is configured with
ABCC_CFG_MAX_NUM_APPL_CMDS. Increasing this value will of course increase the possible number of
message commands, but it will also consume more RAM memory.

#define ABCC_CFG_MAX_NUM_APPL_CMDS (2)

• The number of message commands that can be received before sending a response is configured with
ABCC_CFG_MAX_NUM_ABCC_CMDS. Increasing this value will of course increase the possible number of
message commands, but it will also consume more RAM memory.

#define ABCC_CFG_MAX_NUM_ABCC_CMDS (2)

• The size of the largest message in bytes that will be used is configured with ABCC_CFG_MAX_MSG_SIZE.

NOTE
Anybus CompactCom 30 supports 255 bytes messages and Anybus CompactCom 40 supports
1524 bytes messages. ABCC_CFG_MAX_MSG_SIZE should be set to largest size that will be sent
or received. If this size is not known it is recommended to set the maximum supported size.

#define ABCC_CFG_MAX_MSG_SIZE (255)

• The maximum size of the process data in bytes that will be used in either direction is configured with
ABCC_CFG_MAX_PROCESS_DATA_SIZE. The maximum size is dependent on the type of network that is
used. See the corresponding network guide for the networks to be used.

#define ABCC_CFG_MAX_PROCESS_DATA_SIZE (512)

• Enable or disable driver and Application Data object support for the remap command with
ABCC_CFG_REMAP_SUPPORT_ENABLED. If TRUE the ABCC_CbfRemapDone() needs to be
implemented by the application. The function is described in abcc_drv/inc/abcc.h.

#define ABCC_CFG_REMAP_SUPPORT_ENABLED (FALSE)

Step Two Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 21 of 54

• The maximum number of allowed simultaneous message command sequences when using the message
command sequencer.

#define ABCC_CFG_MAX_NUM_CMD_SEQ (2)

• Configure the number of retries the message command sequencer shall do if there is no buffer available,
before an error is reported.

#define ABCC_CFG_CMD_SEQ_MAX_NUM_RETRIES (0)

Interrupt Handling

The Anybus CompactCom driver can be used either with the interrupt functionality enabled or disabled.

• Define if the CompactCom IRQ pin shall be used along with an interrupt routine by defining
ABCC_CFG_INT_ENABLED. The IRQ pin can be used in both parallel mode and SPI mode. The function
ABCC_ISR() shall be called from inside the CompactCom interrupt routine. If the interrupt is flank triggered,
the interrupt shall be acknowledged before ABCC_ISR() is called.

#define ABCC_CFG_INT_ENABLED (FALSE)

• Configure which interrupts that shall be enabled when using parallel mode with the
ABCC_CFG_INT_ENABLE_MASK_PAR define. The available options are defined in abcc_abp/abp.h
(INT MASK Register). If an event is not notified via the CompactCom interrupt, it must be polled by the
driver function ABCC_RunDriver() (called by example_app/APPL_HandleAbcc()). If not defined,
the default mask is 0.

NOTE
If parallel mode is not used, this define can be ignored.

#define ABCC_CFG_INT_ENABLE_MASK_PAR (ABP_INTMASK_RDPDIEN |
ABP_INTMASK_STATUSIEN | ABP_INTMASK_RDMSGIEN | ABP_INTMASK_WRMSGIEN |
ABP_INTMASK_ANBRIEN)

• ABCC_CFG_HANDLE_INT_IN_ISR_MASK defines what interrupt events for the Anybus CompactCom
that are handled in interrupt context. Events that are enabled in the interrupt enable mask
(ABCC_CFG_INT_ENABLE_MASK_X) but not configured to be handled by the ISR will be translated to
a bit field of ABCC_ISR_EVENT_X definitions (defined in abcc_drv/inc/abcc.h) and forwarded to the
user via the ABCC_CbfEvent() callback. Only applicable for parallel 8/16-bit operating mode.
If not defined, the value will be 0, i.e. no events are handled by the ISR.

#define ABCC_CFG_HANDLE_INT_IN_ISR_MASK (ABP_INTMASK_RDPDIEN)

Anybus® CompactCom™ 40 Adaptations and Customizations

Page 22 of 54 HMSI-27-334 Version 1.8

ADI Settings

• Enable ADI-support for structured data types with ABCC_CFG_STRUCT_DATA_TYPE. This define will affect
the AD_AdiEntryType in abcc_drv/inc/abcc_ad_if.h, used for defining the user ADI:s. If defined,
the required memory usage will increase, i.e. it should only be defined if structured data types are needed.

#define ABCC_CFG_STRUCT_DATA_TYPE (FALSE)

• Enable or disable driver support for triggering of callback notifications each time an ADI is read or
written with ABCC_CFG_ADI_GET_SET_CALLBACK. This define will affect the AD_AdiEntryType in
abcc_drv/inc/abcc_ad_if.h, used for defining the user ADI:s. If an ADI is read by the network the
callback is invoked before the action. If an ADI is written by the network the callback is invoked after the
action.

#define ABCC_CFG_ADI_GET_SET_CALLBACK (FALSE)

• Enable or disable support for 64-bit data types in the Application Data object with
ABCC_CFG_64BIT_ADI_SUPPORT.

#define ABCC_CFG_64BIT_ADI_SUPPORT (FALSE)

Sync Settings

NOTE
Only for 40–series.

• Enable or disable driver support for sync. If TRUE, the abcc_CbfSyncIsr() must be implemented by the
application.

#define ABCC_CFG_SYNC_ENABLE (TRUE)

• ABCC_SYS_SyncInterruptEnable()

Enables the sync interrupt triggered by the sync-pin on the application interface (MIO/SYNC). This function will
be called by the driver to enable the sync interrupt.

Only used when synchronization functionality is enabled.

• ABCC_SYS_SyncInterruptDisable()

Disables the sync interrupt triggered by the sync-pin on the application interface (MIO/ SYNC). This function
will be called by the driver to disable the sync interrupt.

Only used when synchronization functionality is enabled.

Adaptations and Customizations Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 23 of 54

If sync is not used or if the code is compiled for release, the following defines shall be disabled.

The sync measurement functions are used to measuring the input processing time and the output processing
time used in a sync application.

• Enable or disable driver support for measurement of input processing time (used for sync) with
ABCC_CFG_SYNC_MEASUREMENT_IP. This define is used during development by activating it and
compiling special test versions of the product. When ABCC_CFG_SYNC_MEASUREMENT_IP is TRUE
ABCC_SYS_GpioReset() is called when the WRPD has been sent. If running in SPI operating mode
it is instead called when ABCC_SpiRunDriver() has finished sending data to the Anybus. When
ABCC_CFG_SYNC_MEASUREMENT_IP is TRUE, ABCC_GpioSet() needs to be called at the Input
Capture Point.

#define ABCC_CFG_SYNC_MEASUREMENT_IP (FALSE)

• Enable or disable driver support for measurement of output processing time (used for sync) with
ABCC_CFG_SYNC_MEASUREMENT_OP. This define is used during development by activating it and
compiling special test versions of the product. When ABCC_CFG_SYNC_MEASUREMENT_OP is TRUE,
ABCC_SYS_GpioSet() is called from the RDPDI interrupt. When ABCC_CFG_SYNC_MEASUREMENT_OP
is TRUE, ABCC_GpioReset() needs to be called at the Output Valid Point.

#define ABCC_CFG_SYNC_MEASUREMENT_OP (FALSE)

4.1.2. System Adaptation Functions
These functions can be found in abcc_adapt/abcc_sys_adapt.c.

If interrupts will be used in Step Two, implement the following functions:

• ABCC_SYS_AbccInterruptEnable()

Enable the CompactCom HW interrupt (IRQ_N pin on the application interface). This function will be called by
the driver when the CompactCom interrupt shall be enabled.

If ABCC_CFG_INT_ENABLED is not defined in abcc_adapt/abcc_drv_cfg.h, this function does not
need to be implemented.

• ABCC_SYS_AbccInterruptDisable()

Disable CompactCom HW interrupt (IRQ_N pin on the application interface).

If ABCC_CFG_INT_ENABLED is not defined in abcc_adapt/abcc_drv_cfg.h, this function does not
need to be implemented.

Anybus® CompactCom™ 40 Adaptations and Customizations

Page 24 of 54 HMSI-27-334 Version 1.8

4.1.3. Network Identification
So far, all network settings have been left disabled and the product has identified itself as an HMS product, using
default values. Now it is time to customize the network identification settings.

Host Application Objects — Networks
Define the networks to be supported by the implementation by defining their respective host application object
in the file abcc_adapt/abcc_obj_cfg.h. Further implementations of the host application objects are
done in the abcc_obj folder where each object has its own c- and h-files.

Example 3. Defining Supported Networks

#ifndef PRT_OBJ_ENABLE
 #define PRT_OBJ_ENABLE (TRUE)
#endif
#ifndef CCL_OBJ_ENABLE
 #define CCL_OBJ_ENABLE (FALSE)
#endif
#ifndef EIP_OBJ_ENABLE
 #define EIP_OBJ_ENABLE (TRUE)
#endif

The identity related attributes for each enabled network object are parameters that must be set by the
application. They are all related to how the device is identified on the network. If the attribute is enabled
(TRUE), the value will be used. If the attribute is disabled (FALSE), the attribute's default value will be used.
These settings can be found in abcc_adapt/abcc_identification.h.

Example 4. Defining Identity Related Attributes

/*---
** Ethernet Powerlink (0xE9)
**---
*/
#if EPL_OBJ_ENABLE
/*
** Attribute 1: Vendor ID (UINT32 - 0x00000000-0xFFFFFFFF)
*/
#ifndef EPL_IA_VENDOR_ID_ENABLE
 #define EPL_IA_VENDOR_ID_ENABLE TRUE
 #define EPL_IA_VENDOR_ID_VALUE 0xFFFFFFFF
#endif

/*
** Attribute 2: Product Code type (UINT32 - 0x00000000-0xFFFFFFFF)
*/

#ifndef EPL_IA_PRODUCT_CODE_ENABLE
 #define EPL_IA_PRODUCT_CODE_ENABLE TRUE
 #define EPL_IA_PRODUCT_CODE_VALUE 0xFFFFFFFF
#endif

Adaptations and Customizations Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 25 of 54

NOTE
It is also possible to define a function instead of a constant to generate the value. The serial number
is a good example of where a function would be suitable. In the example below, the serial number is
set during production in a specific memory area, and here the same number is fetched:

extern char* GetSerialNumberFromProductionArea(void);

#define PRT_IA_IM_SERIAL_NBR_ENABLE TRUE

#define PRT_IA_IM_SERIAL_NBR_VALUE
GetSerialNumberFromProductionArea()

Host Application Objects — Other
In abcc_adapt/abcc_obj_cfg.h, define all other host application objects that shall be supported by the
implementation. If not supported, leave the value as FALSE.

Example 5. Defining Other Supported Host Application Objects

#ifndef ETN_OBJ_ENABLE
 #define ETN_OBJ_ENABLE (TRUE)
#endif
#ifndef OPCUA_OBJ_ENABLE
 #define OPCUA_OBJ_ENABLE (TRUE)
#endif
#ifndef MQTT_OBJ_ENABLE
 #define MQTT_OBJ_ENABLE (FALSE)
#endif

Host Application Objects — Advanced
The file abcc_adapt/abcc_obj_cfg.h contains all attributes for all supported host objects, except for
those already defined in abcc_adapt/abcc_identification.h. All attributes in this file are disabled
by default. Network specific services are labelled "not supported" by default, and if desired they need to be
implemented in the application.

NOTE
The file abcc_adapt/abcc_platform_cfg.h can be used to override defines
for objects and attributes in the files abcc_adapt/abcc_obj_cfg.h, abcc_adapt/
abcc_identification.h and abcc_adapt/abcc_drv_cfg.h. To override a define, just
add the desired defines to the abcc_adapt/abcc_platform_cfg.h file or use the global
defines section in the development environment. If not used, leave the file empty.

Anybus® CompactCom™ 40 Adaptations and Customizations

Page 26 of 54 HMSI-27-334 Version 1.8

4.1.4. Software Platform Porting
These functions can be found in abcc_adapt/abcc_sw_port.h.

The driver uses a number of functions, like memory copying functions, print functions, and functions for
critical sections, which can be optimized for the current software platform. These functions can be found
in the file abcc_adapt/abcc_sw_port.h (described in abcc_drv/inc/abcc_port.h). The default
example code can be used as-is, but it should be optimized (recommended) for the desired platform later in the
implementation project.

ABCC_PORT_DebugPrint()

Used by the driver for debug prints such as events or error debug information. If not defined the driver will be
silent. Debug prints can e.g. be sent to a serial terminal or be saved to a logfile.

Critical Section Functions

Critical sections are used when there is a risk of resource conflicts or race conditions between CompactCom
interrupt handler context and the application thread.

The following macros are used to implement the critical sections:

• ABCC_PORT_UseCritical()

• ABCC_PORT_EnterCritical()

• ABCC_PORT_ExitCritical()

• ABCC_PORT_TIMER_UseCritical()

• ABCC_PORT_TIMER_EnterCritical()

• ABCC_PORT_TIMER_ExitCritical()

Depending on the configuration of the driver there are different requirements on the critical section
implementation. Please choose the most suitable implementation from the numbered list below. The first
statement that is true will choose the requirement.

1. The first three macros above need to be implemented if any of the statements below are true.
• Any message handling is done within interrupt context.

Requirements:

• The implementation must support that a critical section is entered from interrupt context.
ABCC_PORT_UseCritical() should be used for any declarations needed in advance by
ABCC_PORT_EnterCritical().

• When entering the critical section the required interrupts i.e. any interrupt that may lead to driver access,
must be disabled. When leaving the critical section the interrupt configuration must be restored to the
previous state.

2. ABCC_PORT_EnterCritical() and ABCC_PORT_ExitCritical() need to be implemented if any
of the statements below are true.
• The application is accessing the CompactCom driver message interface from different processes or threads

without protecting the message interface on a higher level (semaphores or similar).

Requirement:

• When entering the critical section the required interrupts i.e. any interrupt that may lead to driver access,
must be disabled. When leaving the critical section the interrupts must be enabled again.

Adaptations and Customizations Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 27 of 54

3. If none of the above is true, no implementation is required.
If the application is calling ABCC_RunTimerSystem() from a timer interrupt, the last three timerspecific
macros also need to be defined. If left undefined by the application in abcc_sw_port.h, these will
assume the same definition as the corresponding three macros specified above:
Requirements:

• ABCC_PORT_TIMER_UseCritical() should be used for any declarations needed in advance by
ABCC_PORT_TIMER_EnterCritical().

• When entering the critical section, the required interrupts i.e. any interrupt that may lead to driver
access, specifically the timer system, must be disabled. When leaving the critical section the interrupt
configuration must be restored to the previous state.

ABCC_PORT_UseCritical()

If any preparation is needed before calling ABCC_PORT_EnterCritical() or
ABCC_PORT_ExitCritical(), this macro is used to add platform specific necessities.

ABCC_PORT_EnterCritical()

This function is called by the driver when there is a possibility of internal resource conflicts between the
CompactCom interrupt handler and the application thread or main loop. The function temporarily disables
interrupts to avoid conflict. Note that all interrupts that could lead to a driver access need to be disabled.

ABCC_PORT_ExitCritical()

Restore interrupts to the state they were before ABCC_PORT_EnterCritical() was called.

ABCC_PORT_TIMER_UseCritical()

If any preparation is needed before calling ABCC_PORT_TIMER_EnterCritical() or
ABCC_PORT_TIMER_ExitCritical(), this macro is used to add platform specific necessities.

ABCC_PORT_TIMER_EnterCritical()

Disables timer based interrupts, if they are not already disabled.

ABCC_PORT_TIMER_ExitCritical()

Restore interrupts to the state they were before ABCC_PORT_TIMER_EnterCritical() was called.

ABCC_PORT_MemCopy()

Copy a number of octets, from the source pointer to the destination pointer.

ABCC_PORT_StrCpyToNative()

Copy a packed string to a native formatted string.

ABCC_PORT_StrCpyToPacked()

Copy a native formatted string to a packed string.

ABCC_PORT_CopyOctets()

Copy octet aligned buffer.

ABCC_PORT_Copy8()

Copy 8 bits from a source to a destination. For a 16 bit char platform octet alignment support (the octet offset is
odd) need to be considered when porting this macro.

ABCC_PORT_Copy16()

Copy 16 bits from a source to a destination. Octet alignment support (the octet offset is odd) need to be
considered when porting this macro.

ABCC_PORT_Copy32()

Copy 32 bits from a source to a destination. Octet alignment support (the octet offset is odd) need to be
considered when porting this macro.

Anybus® CompactCom™ 40 Adaptations and Customizations

Page 28 of 54 HMSI-27-334 Version 1.8

ABCC_PORT_Copy64()

Copy 64 bits from a source to a destination. Octet alignment support (the octet offset is odd) need to be
considered when porting this macro.

Adaptations and Customizations Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 29 of 54

4.1.5. Example Application

ADI:s and Process Data Mapping
In Step One, the example ADI mapping appl_adimap_speed_example.h was used. In the example
application there are ADI mapping examples included, which exemplify different types of ADI:s.

Only one mapping can be used at a time. The map that is currently used in the application is configured in the file
example_app/appl_adi_config.h, by defining APPL_ACTIVE_ADI_SETUP to the ADI mapping to be
used. For detailed information about how to set up the ADIs, see abcc_drv/abcc_ad_if.h.

• example_app/appl_adimap_speed_example.h - Simulation of speed and reference speed.

ADI Description

ADI 1 "Speed", UINT16 (mapped to input data)

ADI 2 "Ref Speed", UINT16 (mapped to output data)

– Data manipulated with the function APPL_CyclicalProcessing().

– No structures or callbacks are used.

• example_app/appl_adimap_simple16.c - This map loops 32 16-bit words

ADI Description

ADI 1 32 element array of UINT16 (mapped to input data)

ADI 2 32 element array of UINT16 (mapped to output data)

– The ADIs are mapped to process data in each direction.

– The data is looped since both ADIs refer to the same data place holder.

– No structures or callbacks are used.

• example_app/appl_adimap_separate16.c - Example of how get/set callbacks can be used.

ADI Description

ADI 10 32 element array of UINT16 (mapped to output data)

ADI 11 32 element array of UINT16 (mapped to input data)

ADI 12 UINT16 (not mapped to process data)

– ADIs 10 and 11 are mapped on process data in each direction.

– A callback is used when the network reads ADI 11. This callback will increment the value of ADI 12 by one.

– A callback is used when the network writes ADI 10. This callback copies the value of ADI 10 to ADI 11.

NOTE
ABCC_CFG_ADI_GET_SET_CALLBACK has to be enabled in abcc_adapt/
abcc_drv_cfg.h since callbacks are used. See ADI Settings (page 23) for more information.

Anybus® CompactCom™ 40 Adaptations and Customizations

Page 30 of 54 HMSI-27-334 Version 1.8

• example_app/appl_adimap_alltypes.c - Example of how structured data types and bit data types
can be used.

ADI Description

ADI 20 UINT32 (mapped to output data)

ADI 21 UINT32 (mapped to input data)

ADI 22 SINT32 (mapped to output data)

ADI 23 SINT32 (mapped to input data)

ADI 24 UINT16 (mapped to output data)

ADI 25 UINT16 (mapped to input data)

ADI 26 SINT16 (mapped to output data)

ADI 27 SINT16 (mapped to input data)

ADI 28 BITS16 (mapped to output data)

ADI 29 BITS16 (mapped to input data)

ADI 30 UINT8 (mapped to output data)

ADI 31 UINT8 (mapped to input data)

ADI 32 SINT8 (mapped to output data)

ADI 33 SINT8 (mapped to input data)

ADI 34 PAD8 (mapped to output data, reserved space, no data)

ADI 35 PAD8 (mapped to input data, reserved space, no data)

ADI 36 BIT7 (mapped to output data)

ADI 37 BIT7 (mapped to input data)

ADI 38 Struct (mapped to output data)

ADI 39 Struct (mapped to input data)

NOTE
ABCC_CFG_STRUCT_DATA_TYPE has to be enabled in abcc_adapt/abcc_drv_cfg.h
since structures are used. See ADI Settings (page 23) for more information.

No specific functionality is implemented to manipulate with the data in this example.

• example_app/appl_adimap_asm.c

Example of an ADI setup with assembly mapping instances.

• example_app/appl_adimap_sync.c

Simple example of how to handle ADI values in a sync application.

• example_app/appl_adimap_verif.c

Used for internal tests at HMS Industrial Networks.

• example_app/adimap_bacnet.c

BACnet specific ADI example.

Adaptations and Customizations Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 31 of 54

The examples implement the following steps that shall be customized to fit the actual implementation:

• ADI Entry List - The ADI:s (i.e. the data instances that will be used in the implementation) must be defined as
an AD_AdiEntryType in an ADI entry list. All parameters related to an ADI are specified here.

ADI Entry Item Description

iInstance ADI instance number (1-65535). 0 is reserved for Class.

pabName Name of ADI (character string, ADI instance attribute #1). If NULL, a zero length name will be returned.

bDataType ABP_BOOL Boolean

ABP_SINT8 Signed 8 bit integer

ABP_SINT16 Signed 16 bit integer

ABP_SINT32 Signed 32 bit integer

ABP_UINT8 Unsigned 8 bit integer

ABP_UINT16 Unsigned 16 bit integer

ABP_UINT32 Unsigned 32 bit integer

ABP_CHAR Character

ABP_ENUM Enumeration

ABP_SINT64 Signed 64 bit integer

ABP_UINT64 Unsigned 64 bit integer

ABP_FLOAT Floating point value (32 bits)

ABP_OCTET Undefined 8 bit data (Only 40-series)

ABP_BITS8 8 bit bit field (Only 40-series)

ABP_BITS16 16 bit bit field (Only 40-series)

ABP_BITS32 32 bit bit field (Only 40-series)

ABP_BIT1 1 bit bit field (Only 40-series)

ABP_BIT2 2 bit bit field (Only 40-series)

... ...

ABP_BIT7 7 bit bit field (Only 40-series)

ABP_PAD0 0 pad bit field (Only 40-series)

ABP_PAD1 1 pad bit field (Only 40-series)

... ...

ABP_PAD16 16 pad bit field (Only 40-series)

DONT_CARE Use for structured data types

bNumOfElements For arrays: number of elements of the data type specified in bDataType. For structured data types: number of
elements in the structure.

bDesc Entry descriptor. Bit values according to the following configurations: ABP_APPD_DESCR_GET_ACCESS:
Get service is allowed on value attribute. ABP_APPD_DESCR_SET_ACCESS: Set service is allowed on
value attribute. ABP_APPD_DESCR_MAPPABLE_WRITE_PD: ADI is mappable on write process data.
ABP_APPD_DESCR_MAPPABLE_READ_PD: ADI is mappable on read process data.

The descriptors can be logically OR:ed together. In the example, ALL_ACCESS is all of the above logically OR:ed
together. Note: Ignored for structured data types.

pxValuePtr Pointer to local value variable. The type is dependent on bDataType. Note: Ignored for structured data types.

pxValuePropPtr Pointer to local value properties struct, if NULL, no properties are applied (max/min/default). The type is
dependent on bDataType. The use of max/min/default for acyclic messaging must be enabled in the Application
Data Object (AD_IA_MIN_MAX_DEFAULT_ENABLE) in abcc_adapt/abcc_obj_cfg.h. Note: Ignored for
structured data types.

psStruct Pointer to an AD_StructDataType. Set to NULL for non structured data types. This field is enabled by defining
ABCC_CFG_STRUCT_DATA_TYPE. (Optional, Only 40-series)

pnGetAdiValue Pointer to an ABCC_GetAdiValueFuncType called when getting an ADI value. (Optional)

Anybus® CompactCom™ 40 Adaptations and Customizations

Page 32 of 54 HMSI-27-334 Version 1.8

ADI Entry Item Description

pnSetAdivalue Pointer to an ABCC_SetAdiValueFuncType called when setting an ADI value. (Optional)

NOTE
The different ADI entries in the example code are defined as "const", i.e. the information will be
saved in ROM. However, sometimes it is not known at compile time what the ADI list shall look
like. In that case, the const declaration must be removed, and the ADI entry structure must be
filled out before calling ABCC_RunDriver(). The information will then be saved in RAM.

NOTE
For use of structured data types in an ADI, see the example in abcc_drv/inc/
abcc_ad_if.h.

• Write and Read Process Data Mapping - ADI:s that shall be mapped as process data are mapped with
AD_MapType. There is one combined list for both read process data and write process data.

Data Mapping Item Description

iInstance ADI number of the ADI to map (see ADI Entry List (page 32) above).

eDir Direction of map. Set to PD_END_MAP to indicate end of default map list.

bNumElem Number of elements to map. Can only be > 1 for arrays or structures. AD_DEFAULT_MAP_ALL_ELEM indicates that
all elements shall be mapped. If instance == AD_MAP_PAD_ADI, bNumElem indicates number of bits to pad with.

bElemStartIndex Element start index within an array or structure. If the ADI is not an array or structure, enter 0.

The mappings are done in the order they will show up on the network.

NOTE
The mapping sequence is terminated by AD_MAP_END_ENTRY, which MUST be present at the
end of the list. During the setup sequence, the Anybus CompactCom driver will ask for this
information by invoking ABCC_CbfAdiMappingReq().

Example 6. Application Data Mapping

/* ADI instance no, direction, number of elements in ADI to be mapped,
index of starting element in ADI to be mapped */

AD_MapType APPL_asAdObjDefaultMap[]
{
 { 3, PD_WRITE, AD_MAP_ALL_ELEM , 0 },
 { 5, PD_WRITE, AD_MAP_ALL_ELEM , 0 },
 { 6, PD_WRITE, AD_MAP_ALL_ELEM , 0 },
 { 1, PD_READ, AD_MAP_ALL_ELEM , 0 },
 { 2, PD_READ, AD_MAP_ALL_ELEM , 0 },
 { 500, PD_WRITE, AD_MAP_ALL_ELEM , 0 },
 { 501, PD_WRITE, AD_MAP_ALL_ELEM , 0 },
 { 502, PD_WRITE, AD_MAP_ALL_ELEM , 0 },
 { 4, PD_READ, AD_MAP_ALL_ELEM , 0 },
 { 503, PD_READ, AD_MAP_ALL_ELEM , 0 },
 { AD_MAP_END_ENTRY}
};

See example of usage in abcc_drv/inc/abcc_ad_if.h.

Adaptations and Customizations Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 33 of 54

Process Data Callbacks
There are two callback functions related to the update of the process data that must be implemented to inform
the host that the read process data has been received from the network or that it is time to update the write
process data. An example is available in example_app/appl_abcc_handler.c.

• BOOL ABCC_CbfUpdateWriteProcessData(void* pxWritePd) - Updates the current write
process data. The data must be copied into the buffer (pxWritePd) before returning from the function.

• void ABCC_CbfNewReadPd(void* pxReadPd) - Called when new process data has been received
from the network. The process data needs to be copied to the application ADI:s (from the buffer pxReadPd)
before returning from the function.

As seen below, in the example code, they both call on a service in the Application Data object to update the
information. These functions works, in general, for any process data map, but they are also slow because of all
considerations needed for the general case. For better performance, please consider writing application specific
update functions.

Example 7. Process Data Callback Functions

void ABCC_CbfNewReadPd(void* pxReadPd)

{
 /*
 ** AD_UpdatePdReadData is a general function that updates all ADI:s
according
 ** to current map.
 ** If the ADI mapping is fixed there is potential for doing that in a
more
 ** optimized way, for example by using memcpy.
 */

 AD_UpdatePdReadData(pxReadPd);
}
BOOL ABCC_CbfUpdateWriteProcessData(void* pxWritePd)
{
 /*
 ** AD_UpdatePdWriteData is a general function that updates all ADI:s
according
 ** to current map.
 ** If the ADI mapping is fixed there is potential for doing that in a
more
 ** optimized way, for example by using memcpy.
 */

 return(AD_UpdatePdWriteData(pxWritePd));
}

Anybus® CompactCom™ 40 Adaptations and Customizations

Page 34 of 54 HMSI-27-334 Version 1.8

Event Handling

NOTE
Only 40-series.

In event mode, all events can be configured to be forwarded to the user via the ABCC_CbfEvent() interface
using the configuration defines below, located in the file abcc_drv_cfg.h.

#define ABCC_CFG_INT_ENABLE_MASK_PAR (ABP_INTMASK_RDPDIEN |
ABP_INTMASK_RDMSGIEN)

#define ABCC_CFG_HANDLE_INT_IN_ISR_MASK (ABP_INTMASK_RDPDIEN)

The configuration above will enable read message and read process data interrupts, but only the read process
data callbacks will be executed in interrupt context directly by the driver. The read message event will be
forwarded to the application by calling the function ABCC_CbfEvent(). This will reduce the amount of work
done in the ISR which causes jitter in the process data handling. Other configurations will of course be possible
to set by the user, to increase performance for any event. At this point the user can trigger the handling of the
event from any chosen context.

NOTE
If the messaging is fully event driven and messages are sent in an interrupt context, please consider
implementing the critical section porting in abcc_adapt/abcc_sw_port.h. The critical section
functions are described in abcc_drv/inc/abcc_port.h.

Example 8. Driver event callback triggering a task

void ABCC_CbfEvent(UINT16 iEvents)
{
 if(iEvents & ABCC_EVENT_RDMSGI)
 {
 ABCC_fRdMsgEvent = TRUE;
 }
}

The code above illustrates how a task can be triggered by the driver event callback.

Adaptations and Customizations Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 35 of 54

Example 9. Task handling receive message events

volatile BOOL ABCC_fRdMsgEvent = FALSE;

void Task(void)
{
 ABCC_fRdMsgEvent = FALSE;

 while (1)
 {
 if(ABCC_fRdMsgEvent)
 {
 ABCC_fRdMsgEvent = FALSE;
 ABCC_TriggerReceiveMessage();
 }
 }
}

This code depicts a task that handles receive message events.

Handling Events in Interrupt Context

NOTE
Only 40–series.

CompactCom driver Anybus CompactCom module
Host application (Interrupt

context)

ReadMessage()

WriteMessage

ABCCInterrupt()

ABCC_Isr()

ABCC_CbfReceiveMsg(msgBuffer)

ABCC_SendRespMsg(msgBuffer)

Note that this call is

done in interrupt context.

#define ABCC_CFG_INT_ENABLED (TRUE)

#define ABCC_CFG_INT_ENABLE_MASK_PAR (ABP_INTMASK_RDMSGIEN)

#define ABCC_CFG_HANDLE_INT_IN_ISR_MASK (ABP_INTMASK_RDMSGIEN)

Anybus® CompactCom™ 40 Adaptations and Customizations

Page 36 of 54 HMSI-27-334 Version 1.8

Handling Events Using ABCC_CbfEvent() Callback Function

NOTE
Only 40–series.

CompactCom driver Anybus CompactCom module
Host application (Interrupt

context)

ReadMessage()

The received message can

be handled in chosen context.

Host application (other

context)

TriggerOtherContext()

ABCCInterrupt()

ABCC_Isr()

End of ISR

ABCC_CbfEvent()

ABCC_CbfReceiveMsg(msgBuffer)

ABCC_SendRespMsg(msgBuffer) WriteMessage()

ABCC_TriggerReceiveMessage()

#define ABCC_CFG_INT_ENABLED (TRUE)

#define ABCC_CFG_INT_ENABLE_MASK_PAR (ABP_INTMASK_RDMSGIEN)

#define ABCC_CFG_HANDLE_INT_IN_ISR_MASK (0)

Adaptations and Customizations Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 37 of 54

Message Handling
The message handling interface functions are found and described in abcc.h.

To send a command message, the user must use the function ABCC_GetCmdMsgBuffer() to retrieve a
message memory buffer. When receiving a response, the user must handle or copy needed data from the
response buffer within the context of the response handler function.

The function ABCC_GetCmdMsgBuffer() can return a NULL pointer, if no more memory buffers are
available. It is the responsibility of the user to resend the message later or treat it as a fatal error.

NOTE
The buffer resources are configured in the file abcc_adapt/abcc_drv_cfg.h.

NOTE
The CompactCom 40-series devices handle up to 1524 bytes of messaging data, whereas the
30-series only handle 255 bytes. The message header supporting 1524 byte messages differs from
the 30-series format since the size field need to be 16 bits instead of 8 bits. The driver supports
communication with 30-series devices as well as 40-series devices, but only supports the new
message format in the driver API. If a 30-series device is used, the driver will internally convert to the
legacy message format. The figure below shows the two message formats.

UINT 8 bSourceId

UINT 8 bDestObj

UINT 16 iInstance

UINT 8 bCmd

UINT 8 bDataSize

UINT 8 bCmdExt 0

UINT 8 bCmdExt 1

UINT 16 iDataSize

UINT 16 iReserved

UINT 8 bSourceId

UINT 8 bDestOb j

UINT 16 iInstance

UINT 8 bCmd

UINT 8 bReserved

UINT 8 bCmdExt 0

UINT 8 bCmdExt 1

255 byte message header
1524 byte message

header

Anybus® CompactCom™ 40 Adaptations and Customizations

Page 38 of 54 HMSI-27-334 Version 1.8

Example 10. Sending a command and receiving a response

When sending the command the driver will connect the source ID to the response function, in this case
appl_HandleResp().

The function appl_HandleResp() is called by the driver when a response with the matching source ID is
received.

Note that the received message buffer does not need be freed, this is done internally in the driver after return
from appl_HandleResp().

CompactCom driver Anybus CompactCom moduleHost application

psMsg = ABCC_GetCmdMsgBuffer();

if(psMsg != NULL)

{

ABCC_GetAttribute(psMsg, ABP_OBJ_NUM_ANB, 1,

ABP_ANB_IA_EXCEPTION, ABCC_GetNewSourceId());

if(ABCC_SendCmdMsg(psMsg, msgRespHandler) != ABCC_EC_NO_ERROR)

{

APPL_UnexpectedError();

}

}

The user defined message response

handler function is passed

as argument in the send function.

static void msgRespHandler(ABP_MsgType* psMsg)

{

if(ABCC_VerifyMessage(psMsg) != ABCC_EC_NO_ERROR)

{

APPL_UnexpectedError();

return;

}

/*

** Handle response data

*/

}

ReadMessage()

WriteMessage()

msgBuffer:=ABCC_GetCmdMsgBuffer()

ABCC_SendCmdMsg(msgBuffer, msgRespHandler)

ABCC_RunDriver()

ABCC_RunDriver()

msgRespHandler(msgBuffer)

Sending a command to the

CompactCom

Adaptations and Customizations Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 39 of 54

Example 11. Receiving a command and sending a response

NOTE
The received command buffer is reused for the response.

CompactCom driver Anybus CompactCom moduleHost application

ReadMessage()
void ABCC_CbfReceiveMsg(ABP_MsgType* msgBuffer)

{

/*

** Process command message

*/

/*

** Reuse command buffer for response

*/

ABP_SetMsgResponse(msgBuffer , ABP_UINT8_SIZEOF);

eErr = ABCC_SendRespMsg(msgBuffer);

}

WriteMessage()

ABCC_RunDriver()

ABCC_CbfReceiveMsg(msgBuffer)

ABCC_SendRespMsg(msgBuffer)

Handling of command

received from CompactCom

The driver uses non-blocking Anybus CompactCom message handling. This means that a state machine must be
used to keep track of commands and responses.

Command Sequencer
An alternative way to send messages and commands to the CompactCom device is to use the command
sequencer. The driver provides support for command buffer allocation, resource control and sequencing of
messages. The user must provide functions to build messages and handle responses.

The command sequencer API is described in abcc_drv\inc\abcc_cmd_seq.h.

An array of ABCC_CmdSeqType's is provided and defines the command sequence to be executed. The last entry
in the array is indicated by NULL pointers. The next command in the sequence will be executed when the
previous command has successfully received a response.

If a command sequence response handler exists the response will be passed to the application.

static const ABCC_CmdSeqType appl_asUserInitCmdSeq[] =
{
 ABCC_CMD_SEQ(UpdateIpAddress, NULL), /* pnCmdHandler,
pnRespHandler */
 ABCC_CMD_SEQ(UpdateNodeAddress, NULL),
 ABCC_CMD_SEQ(UpdateBaudRate, NULL),
 ABCC_CMD_SEQ_END() /* End of sequence */
};
ABCC_AddCmdSeq(appl_asUserInitCmdSeq, UserInitDone);

If the command sequence response handler is NULL the application will not be notified. If the error bit is set the
application will be notified by the ABCC_CbfDriverError() callback.

Anybus® CompactCom™ 40 Adaptations and Customizations

Page 40 of 54 HMSI-27-334 Version 1.8

If the pnCmdSeqDone function callback exists (UserInitDone in the example above) the application will
be notified when the whole command sequence has finished. The number of concurrent command
sequences is limited by ABCC_CFG_MAX_NUM_CMD_SEQ defined in abcc_drv_cfg.h. In example_app/
appl_abcc_handler.c, there are two examples of usage of the command sequencer.

1. When ABCC_CbfUserInitReq() is called, the IP address or node address is set before
ABCC_UserInitComplete() is called.

2. When the Anybus CompactCom device indicates exception state, the exception codes are read.

Adaptations and Customizations Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 41 of 54

Appendix A. Software Overview

1. Folders
Folders Description

$(ROOT)/abcc_abp This folder includes all Anybus protocol files. It may be updated when new Anybus CompactCom
software releases are available, but is otherwise read only. The included files are considered read only.

$(ROOT)/abcc_drv/inc .h files published to the application. The folder contains driver configuration files for the application as
well as for the system dependent part of the driver. The included files are considered read only.

$(ROOT)/abcc_drv/src Anybus CompactCom driver implementation. The included files are considered read only.

$(ROOT)/abcc_adapt This folder includes all adaptation and configuration files for the driver and the objects. The files must
be modified by the user to configure and adapt the driver and the example code.

$(ROOT)/abcc_obj This folder includes all Anybus host object implementations. The files may be modified by the user.

$(ROOT)/example_app Example application. The files may be modified by the user.

2. Root Files
Folders Description

$(ROOT)/main.c Main file for the example application.

$(ROOT)/abcc_versions.h Contains version defines for example code, driver and abp.

3. CompactCom Driver Interface (Read Only)
File Name Description

/abcc_drv/inc/abcc.h The public interface for the Anybus CompactCom Driver.

/abcc_drv/inc/abcc_ad_if.h Type definitions for ADI mapping.

/abcc_drv/inc/abcc_cfg.h Configuration parameters of the driver.

/abcc_drv/inc/abcc_port.h Definitions for porting thee Anybus CompactCom to different platforms.

/abcc_drv/inc/abcc_sys_ adapt.h Interface for target dependent functions common to all operating modes.

/abcc_drv/inc/abcc_sys_adapt_ spi.h Interface for target dependent functions needed by abcc_spi_drv.c.

/abcc_drv/inc/abcc_sys_adapt_ par.h Interface for target dependent functions needed by abcc_par_drv.c.

/abcc_drv/inc/abcc_sys_adapt_ ser.h Interface for target dependent functions needed by abcc_ser_drv.c.

/abcc_drv/inc/abcc_cmd_ seq_if.h Interface for the command sequencer.

Anybus® CompactCom™ 40 Software Overview

Page 42 of 54 HMSI-27-334 Version 1.8

4. Internal Driver Files (Read Only)
The contents of the files in the /abcc/drv/src folder should not be changed.

File Name Description

/abcc_drv/src/abcc_drv_if.h Interface for low level driver implementing the specific operating mode.

/abcc_drv/src/abcc_debug_ err.h

/abcc_drv/src/abcc_debug_ err.c

Help macros for debugging and error reporting.

/abcc_drv/src/abcc_link.c

/abcc_drv/src/abcc_link.h

Message buffer handling and message queue handling.

/abcc_drv/src/abcc_mem.c

/abcc_drv/src/abcc_mem.h

Message resource memory support used by abcc_link.c.

/abcc_drv/src/abcc_handler.h

/abcc_drv/src/abcc_handler.c

Anybus CompactCom handler implementation including handler parts that are independent of
operating mode.

/abcc_drv/src/abcc_setup.h

/abcc_drv/src/abcc_setup.c

Anybus CompactCom handler implementation including setup state machine.

/abcc_drv/src/abcc_remap.c Anybus CompactCom handler implementation for remapping process data at runtime.

/abcc_drv/src/abcc_timer.h

/abcc_drv/src/abcc_timer.c

Support for Anybus CompactCom driver timeout functionality.

/abcc_drv/src/abcc_cmd_seq.c

/abcc_drv/src/abcc_cmd_seq.h

Message command sequencer.

4.1. 8/16 Bit Parallel Event Specific Files

File Name Description

/abcc_drv/src/par/abcc_ handler_par.c Implements ABCC_RunDriver() and ABCC_ISR().

/abcc_drv/src/par/abcc_ par_drv.c Implements the driver for parallel operating mode.

/abcc_drv/src/par/abcc_ drv_par_if.h Implements the parallel driver interface.

4.2. SPI Specific Files

File Name Description

/abcc_drv/src/par/abcc_ handler_spi.c Implements ABCC_RunDriver() and ABCC_ISR().

/abcc_drv/src/spi/abcc_spi_ drv.c Implements the driver for SPI operating mode.

/abcc_drv/src/spi/abcc_drv_ spi_if.h Implements the SPI driver interface.

/abcc_drv/src/spi/abcc_crc32.c

/abcc_drv/src/spi/abcc_crc32.h

Crc32 implementation used by SPI.

4.3. 8 Bit Parallel Half Duplex Specific Files

File Name Description

/abcc_drv/src/par30/abcc_
handler_par30.c

Implements ABCC_RunDriver() and ABCC_ISR().

/abcc_drv/src/par30/abcc_ par30_drv.c Implements the driver for parallel 30 half duplex operating mode.

/abcc_drv/src/par30/abcc_
drv_par30_if.h

Implements the parallel 30 half duplex driver interface.

Internal Driver Files (Read Only) Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 43 of 54

4.4. Serial Specific Files

File Name Description

/abcc_drv/src/serial/abcc_ handler_ser.c Implements ABCC_RunDriver() and ABCC_ISR().

/abcc_drv/src/serial/abcc_ serial_drv.c Implements the driver for serial operating mode.

/abcc_drv/src/serial/abcc_ drv_ser_if.h Implements the serial driver interface.

/abcc_drv/src/serial/abcc_ crc16.c

/abcc_drv/src/serial/abcc_ crc16.h

Crc16 implementation used by Serial.

5. System Adaptation Files
File Name Description

/abcc_adapt/abcc_drv_cfg.h User configuration of the CompactCom driver. The configuration parameters are documented in the
driver's public interface abcc_cfg.h.

/abcc_adapt/abcc_ identification.h User configuration to set the identification parameters of an CompactCom module.

/abcc_adapt/abcc_obj_cfg.h User configuration of the Anybus object implementation.

/abcc_adapt/abcc_sw_port.c Platform dependent macros and functions required by the CompactCom driver and Anybus object
implementation.

/abcc_adapt/abcc_sw_port.h Platform dependent macros and functions required by the CompactCom driver and Anybus object
implementation. The description of the macros are found in abcc_port.h. The file abcc_port.h is found
in the public CompactCom driver interface.

/abcc_adapt/abcc_sys_adapt.c -

/abcc_adapt/abcc_td.h Definition of CompactCom types.

/abcc_adapt/abcc_platform_cfg.h Platform specific defines overriding defines in abcc_adapt/abcc_obj_cfg.h, abcc_adapt/
abcc_drv_cfg.h and abcc_adapt/abcc_identification.h.

Anybus® CompactCom™ 40 System Adaptation Files

Page 44 of 54 HMSI-27-334 Version 1.8

Appendix B. API

1. API Documentation
The Anybus CompactCom API layer defines a common interface for all network applications to the Anybus
CompactCom driver. For more information about the interface, see /abcc_dev/inc/abcc.h.

Table B.1. API Functions

Function Description

ABCC_StartDriver() Initiates the driver, enables interrupt, and sets the operating mode. When this function has been
called the timer system can be started. Note! This function will NOT release the reset of the module.

ABCC_IsReadyforCommunication() This function must be polled after the ABCC_StartDriver() until it returns the value TRUE. This
indicates that the module is ready for communication and the CompactCom setup sequence is
started.

ABCC_ShutdownDriver() Stops the driver and puts it into SHUTDOWN state.

ABCC_HWReset() Module hardware reset. ABCC_ShutdownDriver() is called from this function.

NOTE
This function will only set reset pin to low. It is the responsibility of the caller
to make sure that the reset time (the time between the ABCC_HWReset() and
ABCC_HWReleaseReset() calls) is long enough.

ABCC_HWReleaseReset() Releases the module reset.

ABCC_RunTimerSystem() Handles all timers for the CompactCom driver. It is recommended to call this function on a regular
basis from a timer interrupt. Without this function no timeout and watchdog functionality will work.

ABCC_RunDriver() Drives the CompactCom driver sending and receiving mechanism. This main routine should be called
cyclically during polling.

ABCC_UserInitComplete() This function should be called by the application when the last response from the user specific setup
has been received. This will end the CompactCom setup sequence and ABCC_SETUP_COMPLETE will
be sent.

ABCC_SendCmdMsg() Sends a command message to the module.

ABCC_SendRespMsg() Sends a response message to the module.

ABCC_SendRemapRespMsg() Sends a remap response to the module.

ABCC_SetAppStatus() Sets the current application status, according to ABP_AppStatusType in abp.h.

ABCC_GetCmdMsgBuffer() Allocates the command message buffer.

ABCC_ReturnMsgBuffer() Frees the message buffer.

ABCC_TakeMsgBufferOwnership() Takes the ownership of the message buffer.

ABCC_ModCap() Reads the module capability. This function is only supported by the parallel operating mode.

ABCC_LedStatus() Reads the LED status. Only supported in SPI and parallel operating mode.

ABCC_AnbState() Reads the current Anybus state.

ABCC_GetCmdQueueSize() Sends a response message to the ABCC. The received command buffer can be reused as a response
buffer. If a new buffer is used, the function ABCC_GetCmdMsgBuffer() must be used to allocate the
buffer.

ABCC_GetAppStatus() Sets the current application status. This information is only supported in SPI and parallel operating
mode. When used for other operating modes the call has no effect.

ABCC_ReadModuleId() Detects if a module is present. If the MD pins on the host connector are not connected, TRUE will be
returned.

ABCC_ModuleDetect() Reads the module capability. This function is only supported by the Anybus CompactCom 40 parallel
mode.

ABCC_IsSupervised() Retrieves the network type. This function will return a valid value after ABCC_CbfAdiMappingReq has
been called by the driver. If called earlier the function will return 0xFFFF which indicates that the
network is unknown. The different network types ca be found in abp.h.

API Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 45 of 54

Function Description

ABCC_HWInit This function will initiate the driver, enable interrupt, and set the operation mode. If a firmware
update is pending, a delay (iMaxStartupTime) can be defined, describing how long the driver is
to wait for the startup interrupt. If the iMaxStartupTIme is set to zero (0) the driver will use the
ABCC_CFG_STARTUP_TIME_MS time. When this function has been called the timer system can
be started, see ABCC_RunTimerSystem(). This function will not release the reset of the Anybus
CompactCom. To release the reset, ABCC_HwReleaseReset() has to be called by the application.

Table B.2. API Event Related Functions

Function Description

ABCC_ISR() This function should be called from inside the CompactCom interrupt routine to acknowledge and
handle received CompactCom events (triggered by the IRQ pin on the CompactCom application
interface).

ABCC_TriggerRdPdUpdate() Triggers a RdPd read.

ABCC_TriggerReceiveMessage() Triggers a message receive read.

ABCC_TriggerWrPdUpdate() Indicates that new process data from the application is available and will be sent to the CompactCom.

ABCC_TriggerAnbStatusUpdate() Checks for Anybus status change.

ABCC_TriggerTransmitMessage() Checks sending queue.

Table B.3. API Callbacks

Function Description

ABCC_CbfAdiMappingReq() The function is called when the driver is about to start the automatic process data mapping. It returns
mapping information for read and write PD.

ABCC_CbfUserInitReq() The function is called to trigger a user specific setup during the module setup state.

ABCC_CbfUpdateWriteProcessData() Updates the current write process data. The data must be copied into the buffer before returning from
the function.

ABCC_CbfNewReadPd() Called when new process data has been received. The process data needs to be copied to the
application ADI:s before returning from the function.

ABCC_CbfReceiveMsg() A message has been received from the module. This is the receive function for all received commands
from the module.

ABCC_CbfWdTimeout() The function is called when communication with the module has been lost.

ABCC_CbfWdTimeoutRecovered() Indicates a recent CompactCom watchdog timeout but now the communication is working again.

ABCC_CbfRemapDone() This callback is invoked when REMAP response is successfully sent to the module.

ABCC_CbfAnbStateChanged() This callback is invoked if the module changes status i.e. if Anybus state or supervision state is
changed.

ABCC_CbfEvent() Called for unhandled events. Unhandled events are events enabled in
ABCC_USER_INT_ENABLE_MASK but not present in ABCC_USER_HANDLE_IN_ABCC_ISR_MASK.

ABCC_CbfSync_Isr() If sync is supported this function will be invoked at the sync event.

ABCC_CbfDriverError() This callback is invoked if the Anybus CompactCom changes states, see ABP_AnbStateType in abp.h for
more information.

NOTE
All the API callback functions above need to be implemented by the application.

Table B.4. Support Functions

Function Description

ABCC_NetworkType() Retrieves the network type.

ABCC_ModuleType() Retrieves the module type.

ABCC_NetFormatType() Retrieves the network endianness.

ABCC_ParameterSupport() Retrieves the parameter support.

ABCC_GetOpmode() Calls ABCC_SYS_GetOpmode() to read the operating mode from HW.

ABCC_GetAttribute() Fills an Anybus CompactCom message with parameters to get an attribute.

ABCC_SetByteAttribute() Fills an Anybus CompactCom message with parameters in order to set an attribute.

Anybus® CompactCom™ 40 API Documentation

Page 46 of 54 HMSI-27-334 Version 1.8

Function Description

ABCC_VerifyMessage() Verifies an Anybus CompactCom response message.

ABCC_GetDataTypeSize() Returns the size of an ABP data type.

ABCC_SetMsgHeader() Sets the input arguments to the ABCC message header correctly.

ABCC_GetNewSourceId() Returns a new source Id that can be used when sending a command message.

ABCC_GetDataTypeSizeInBits Returns the size of an ABP data type in bits.

API Documentation Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 47 of 54

Appendix C. Host Application State Machine

The application flow in the example code is maintained using the state machine described in the flowchart
below.

The function APPL_HandleAbcc(), found in example_app/appl_abcc_handler.h, is called cyclically from the main
loop. It implements the state machine and is responsible for the execution of various tasks during each state.

The first time APPL_HandleAbcc() is called, state APPL_INIT is entered.

APPL_INIT

• Checks that an Anybus CompactCom device is detected.

• The Application Data object is initiated, using the desired ADI mapping. In this example, it is one of the ADI
mapping examples described in Example Application (page 30).

• ABCC_StartDriver() is called to initiate the driver.

• ABCC_HwReleaseReset() is called to release the Anybus CompactCom device reset.

• Sets state to APPL_WAITCOM.

Anybus® CompactCom™ 40 Host Application State Machine

Page 48 of 54 HMSI-27-334 Version 1.8

APPL_WAITCOM

• Waits for the Anybus CompactCom device to signal that it is ready to communicate.

• Sets state to APPL_RUN.

APPL_RUN

• ABCC_RunDriver() is called to run the driver. Callbacks will be invoked for specific events. All callbacks
used by the driver are named ABCC_Cbf(). The required callbacks are all implemented in example_app/
appl_abcc_handler.c.

• During startup the following events will be triggered by the driver (in the described order):
– ABCC_CbfAnbStateChanged() will be called when the Anybus CompactCom device has entered

ABP_ANB_STATE_SETUP. If desired, set a breakpoint or use a debug function to indicate state changes.

– ABCC_CbfAdiMappingReq() will be called when the CompactCom device is ready to send the default
mapping command. The generic example code will ask the Application Data object for the configured
default map.

– ABCC_CbfUserInitReq() will be called when it is possible for the application to send commands to configure
or read information to/from the CompactCom device. In the example code, the function triggers the
user init state machine to start sending a command sequence to the CompactCom device. When the last
message response is received, the function ABCC_UserInitComplete() is called to notify the driver that the
user init sequence has ended. This will internally trigger the driver to send a SETUP_COMPLETE command
to the CompactCom device. If no user init is needed, ABCC_UserInitComplete() can be called directly from
ABCC_CbfUserInitReq().

– When setup is complete, the CompactCom device will enter state ABP_ANB_STATE_NW_INIT. This
means that ABCC_CbfStateChanged() will be called. In this state a number of commands will be sent
from the CompactCom device to the host application objects. All received commands will be handled
in ABCC_CbfReceiveMsg(). The responses to the commands depend on which host objects that are
implemented, and the configuration made in abcc_identification.h and abcc_obj_cfg.h. If desired, set a
breakpoint in ABCC_CfgReceiveMsg() to indicate the commands that are sent and how they are handled.

– When network initiation is done, the CompactCom device will enter state ABP_ANB_STATE_WAIT_PROCESS.
Again, ABCC_CbgStateChanged() will be called by the driver. At this point, it is possible to set up an IO
connection from the network.

• When the startup sequence is completed, the following events can be triggered:
– When an IO connection is set up, the CompactCom will enter state ABP_ANB_STATE_PROCESS_ACTIVE (or,

on some networks, ABP_ANB_STATE_IDLE). When process data is received from the CompactCom device,
the ABCC_CbfNewReadPd() function is called. The example code then forwards the data to the Application
Data object by calling AD_UpdatePdReadData(), to update the ADIs. The example code only loops data, so
at the end of the function body, ABCC_TriggerWrPdUpdate() is called to update the write process data. The
ABCC_TriggerWrPdUpdate() function triggers ABCC_CbfUpdateWriteProcessData(), which is called whenever
the driver is ready to send new process data. ABCC_TriggerWrPdUpdate() should always be called when
updated write process data is available.

– If state ABP_ANB_STATE_EXCEPTION is entered, the cause of the exception can be read from the
CompactCom device by activating the exception read state machine. RunExceptionSM() will be called from
state APPL_RUN when the CompactCom device is in state ABP_ANB_STATE_EXCEPTION.

– APPL_Reset() is called to initiate a restart of the device. This will happen if the application host object
receives a reset request from the CompactCom device. The CompactCom handler state machine will then
enter state APPL_ABCCRESET and start over from APPL_INIT.

– APPL_RestartAbcc() is, like APPL_Reset(), used to initiate a restart of the device. If called, the CompactCom
handler state machine will then enter state APPL_ABCCRESET. (Currently this function is not used in the
example code. It could be used instead of APPL_Reset(), since it avoids power cycling.

– APPL_Shutdown() is called to initiate a shutdown of the driver.

Host Application State Machine Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 49 of 54

APPL_SHUTDOWN

• ABCC_HWReset() is called to reset the Anybus CompactCom device.

• Sets state to APPL_HALT.

APPL_ABCCRESET

• ABCC_HWReset() is called to reset the Anybus CompactCom device.

• Sets state to APPL_INIT.

APPL_DEVRESET

• ABCC_HWReset() is called to reset the Anybus CompactCom device.

• Sets state to APPL_HALT.

The return value to the main loop (via the function call from APPL_AbccHandler()) will indicate that the device
should be reset.

APPL_HALT

• No action.

Anybus® CompactCom™ 40 Host Application State Machine

Page 50 of 54 HMSI-27-334 Version 1.8

Appendix D. 30- and 40-series Modules in the Same
Application

The Host Application Example Code, provided for communication with the Anybus CompactCom, supports both
30-series and 40-series in the same application. Depending on what series is mounted, the driver will adjust its
settings to use the correct communication protocol.

The Host Application Example Code can be downloaded here: www.anybus.com/starterkit40.

Some adaptions of the code for the target system are needed to automatically be able to switch between the
30-series and the 40-series. There are also some things to consider when preparing the hardware design to be
able to use both series in the same application.

1. Hardware Design Considerations
The 30-series only supports the 8-bit parallel interface and the serial interface. I.e. in order to use both the
30-series and the 40-series in the same application, at least one of those interfaces are mandatory to implement.

Use the table below, and make sure the needed interfaces are implemented when designing the host application
hardware. In new designs, it is strongly recommended to use the Event protocol for the 40-series.

Communication Interface 30-series protocol support 40-series protocol support

Serial Interface Ping-Pong protocol Ping-Pong protocol

Parallel 8-bit Ping-Pong protocol Ping-Pong protocol and Event protocol

Parallel 16-bit Not available Event protocol

SPI Not available Event protocol

The OM3 signal in the host application connector shares the same pin as the Tx-signal in the 40-series, and it
is not available in the 30-series. To use the serial interface and the parallel 8-bit interface with the Ping-Pong
protocol in the 40-series, this pin must be pulled up to 3.3V. A weak internal pull-up is present in the Anybus
CompactCom hardware.

Also see the Module Identification section below for more hardware related recommendations.

30- and 40-series Modules in the Same Application Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 51 of 54

http://www.anybus.com/starterkit40

2. Module Identification
In order to automatically detect what module type is mounted, the Module Identification pins (MI[0..1])
need to be connected (signals are available in the host application connector), and the function
ABCC_SYS_ReadModuleId() must be adapted in the code.

1. In abcc_adapt/abcc_drv_cfg.h:

#define ABCC_CFG_MODULE_ID_PINS_CONN (TRUE)

2. Adapt the function ABCC_SYS_ReadModuleId() and return one of the following values depending on
what module type is mounted:

ABP_MODULE_ID_ACTIVE_ABCC40
ABP_MODULE_ID_ACTIVE_ABCC30

If the Module Identification pins are not implemented in the hardware, the Module ID must be set with the
define ABCC_CFG_ABCC_MODULE_ID.

1. Disable the possibility to automatically read module ID in abcc_adapt/abcc_drv_cfg.h.

#define ABCC_CFG_MODULE_ID_PINS_CONN (FALSE)

2. Define the current module ID in abcc_adapt/abcc_drv_cfg.h.
For a 40-series module:

#define ABCC_CFG_ABCC_MODULE_ID ABP_MODULE_ID_ACTIVE_ABCC40

For a 30-series module:

#define ABCC_CFG_ABCC_MODULE_ID ABP_MODULE_ID_ACTIVE_ABCC30

If the module identity is required for some reason later in the code, the function ABCC_ModuleType() will
return the module type for the currently mounted module.

3. Enable Supported Communication Interfaces
The 30-series supports the serial and the 8-bit parallel communication interfaces. The 40-series supports
all communication interfaces listed below. For more information about the communication interfaces, see
abcc_drv/inc/abcc_cfg.h. Only enable the communication interfaces that will actually be used, since
every enabled interface will increase the memory size needed.

In abcc_adapt/abcc_drv_cfg.h, enable supported communication interfaces, e.g.:

 #define ABCC_CFG_DRV_PARALLEL (FALSE) //Only for
40-series
 #define ABCC_CFG_DRV_SPI (TRUE) //Only for
40-series
 #define ABCC_CFG_DRV_SERIAL (TRUE) //30- and 40-
series
 #define ABCC_CFG_DRV_PARALLEL_30 (FALSE) //30- and 40-
series

Anybus® CompactCom™ 40 Module Identification

Page 52 of 54 HMSI-27-334 Version 1.8

4. Select Operating Mode
Since the operating mode can differ between a 40-series module and a 30-series module, it must either be
configured by adapting the functions ABCC_SYS_GetOpmode() and ABCC_SYS_SetOpmode(), or by
setting a fixed operating mode for each module type.

If the operating mode is configurable with the above functions, the following must be implemented, and the
operating mode pins OM0-OM3 (signals available in the host application connector) must be controllable from
the host processor:

1. Enable the operating mode to be gettable from an external source (e.g. configurable via a parameter).

#define ABCC_CFG_OP_MODE_GETTABLE (TRUE)

2. Implement the function ABCC_SYS_GetOpmode() to return the configured operating mode.

3. Enable whether the operating mode is settable via hardware pins on the host processor connected to the
Anybus CompactCom.

#define ABCC_CFG_OP_MODE_SETTABLE (TRUE)

4. Implement the function ABCC_SYS_SetOpmode() to set the configured operating mode to the Anybus
CompactCom (controlling the OM0-OM3 signals).

If the operating mode is fixed (and never changed) for each module type, the following defines can be used in
abcc_adapt/abcc_drv_cfg.h.

1. Disable the function to get the operating mode from an external source.

#define ABCC_CFG_OP_MODE_GETTABLE (FALSE)

2. Set a fixed operating mode for each module type, e.g.:

#define ABCC_CFG_ABCC_OP_MODE_30 ABP_OP_MODE_SERIAL_115_2
#define ABCC_CFG_ABCC_OP_MODE_40 ABP_OP_MODE_SPI

The following options are available for the operating mode settings:

ABP_OP_MODE_SPI //Only for 40-series

ABP_OP_MODE_16_BIT_PARALLEL //Only for 40-series

ABP_OP_MODE_8_BIT_PARALLEL //30- and 40-series

ABP_OP_MODE_SERIAL_19_2 //30- and 40-series

ABP_OP_MODE_SERIAL_57_6 //30- and 40-series

ABP_OP_MODE_SERIAL_115_2 //30- and 40-series

ABP_OP_MODE_SERIAL_625 //30- and 40-series

3. To set the operating mode physically to the Anybus CompactCom, it is also in this case possible to enable the
define ABCC_CFG_OP_MODE_SETTABLE, and implement the function ABCC_SYS_SetOpmode().

#define ABCC_CFG_OP_MODE_SETTABLE (TRUE)

Select Operating Mode Anybus® CompactCom™ 40

HMSI-27-334 Version 1.8 Page 53 of 54

5. Message Data Size
The 30-series supports up to 255 bytes of message data. The 40-series supports up to 1524 bytes of message
data. This value is used when compiling to set up internal buffers and shall be configured for the largest size
that will be used in the application. Remember to consider the limitations for the different module types when
sending a message. The define can be found in abcc_adapt/abcc_drv_cfg.h.

#define ABCC_CFG_MAX_MSG_SIZE (255)

6. Process Data Size
The 30-series supports up to 256 bytes of process data in either direction. The 40-series supports up to 4096
bytes of process data in either direction. This value is used when compiling to set up internal buffers and shall
be configured for the largest size that will be used in the application. Remember to consider the limitations
for the different module types when mapping the process data. The define can be found in abcc_adapt/
abcc_drv_cfg.h.

#define ABCC_CFG_MAX_PROCESS_DATA_SIZE (256)

7. Supported Data Types
The 40-series has support for additional data types for the ADIs. When creating the ADIs to be used for the
product, make sure the used data types are supported by the used modules.

The data types DOUBLE, BOOL1, BITS8, BITS16, BITS32, OCTET, PADx, and BITx are only supported by the
40-series. Structs of any data type are only supported by the 40-series.

Anybus® CompactCom™ 40 Message Data Size

Page 54 of 54 HMSI-27-334 Version 1.8

	Anybus® CompactCom™ 40
	Table of Contents
	1. Preface
	1.1. About this Document
	1.2. Related Documents
	1.3. Document History
	1.4. Document Conventions

	2. Introduction
	2.1. Overview
	2.2. Preparations

	3. Step One
	3.1. System Adaptation and Application Development
	3.2. System Set-up
	3.2.1. Big- or Little Endian
	3.2.2. 16-bit Char System
	3.2.3. Extended Bus Endian Difference
	3.2.4. Data Types

	3.3. Anybus CompactCom Set-up
	3.3.1. Communication Interfaces and Operating Modes
	3.3.2. Parallel Operating Mode Specifics
	3.3.3. SPI Operating Mode Specifics
	3.3.4. Module ID and Module Detect Settings
	3.3.5. Message and Process Data Settings
	3.3.6. Interrupt Handling
	3.3.7. Communication Watchdog Settings
	3.3.8. ADI Settings
	3.3.9. Debug Event Print Settings
	3.3.10. Startup Time
	3.3.11. Sync Settings

	3.4. System Adaptation Functions
	3.4.1. General Functions
	3.4.2. SPI Operating Mode
	3.4.3. Parallel Operating Mode
	3.4.4. Serial Operating Mode

	3.5. Object Configuration
	3.6. Example Application
	3.6.1. ADI and Process Data Mapping
	3.6.2. Main Loop
	3.6.3. Compile and Run

	4. Step Two
	4.1. Adaptations and Customizations
	4.1.1. Anybus CompactCom Setup
	4.1.2. System Adaptation Functions
	4.1.3. Network Identification
	Host Application Objects — Networks
	Host Application Objects — Other
	Host Application Objects — Advanced

	4.1.4. Software Platform Porting
	4.1.5. Example Application
	ADI:s and Process Data Mapping
	Process Data Callbacks
	Event Handling
	Handling Events in Interrupt Context
	Handling Events Using ABCC_CbfEvent() Callback Function
	Message Handling
	Command Sequencer

	Appendix A. Software Overview
	1. Folders
	2. Root Files
	3. CompactCom Driver Interface (Read Only)
	4. Internal Driver Files (Read Only)
	4.1. 8/16 Bit Parallel Event Specific Files
	4.2. SPI Specific Files
	4.3. 8 Bit Parallel Half Duplex Specific Files
	4.4. Serial Specific Files

	5. System Adaptation Files

	Appendix B. API
	1. API Documentation

	Appendix C. Host Application State Machine
	Appendix D. 30- and 40-series Modules in the Same Application
	1. Hardware Design Considerations
	2. Module Identification
	3. Enable Supported Communication Interfaces
	4. Select Operating Mode
	5. Message Data Size
	6. Process Data Size
	7. Supported Data Types

